ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.07807
23
30

Mode-Seeking on Hypergraphs for Robust Geometric Model Fitting

25 March 2016
Hanzi Wang
Guobao Xiao
Y. Yan
David Suter
ArXivPDFHTML
Abstract

In this paper, we propose a novel geometric model fitting method, called Mode-Seeking on Hypergraphs (MSH),to deal with multi-structure data even in the presence of severe outliers. The proposed method formulates geometric model fitting as a mode seeking problem on a hypergraph in which vertices represent model hypotheses and hyperedges denote data points. MSH intuitively detects model instances by a simple and effective mode seeking algorithm. In addition to the mode seeking algorithm, MSH includes a similarity measure between vertices on the hypergraph and a weight-aware sampling technique. The proposed method not only alleviates sensitivity to the data distribution, but also is scalable to large scale problems. Experimental results further demonstrate that the proposed method has significant superiority over the state-of-the-art fitting methods on both synthetic data and real images.

View on arXiv
Comments on this paper