ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.07695
25
14

Part-of-Speech Relevance Weights for Learning Word Embeddings

24 March 2016
Quan Liu
Zhenhua Ling
Hui Jiang
Yu Hu
ArXivPDFHTML
Abstract

This paper proposes a model to learn word embeddings with weighted contexts based on part-of-speech (POS) relevance weights. POS is a fundamental element in natural language. However, state-of-the-art word embedding models fail to consider it. This paper proposes to use position-dependent POS relevance weighting matrices to model the inherent syntactic relationship among words within a context window. We utilize the POS relevance weights to model each word-context pairs during the word embedding training process. The model proposed in this paper paper jointly optimizes word vectors and the POS relevance matrices. Experiments conducted on popular word analogy and word similarity tasks all demonstrated the effectiveness of the proposed method.

View on arXiv
Comments on this paper