ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.05208
18
13

Safe Sequential Path Planning Under Disturbances and Imperfect Information

16 March 2016
Somil Bansal
Mo Chen
J. F. Fisac
Claire Tomlin
ArXivPDFHTML
Abstract

Multi-UAV systems are safety-critical, and guarantees must be made to ensure no unsafe configurations occur. Hamilton-Jacobi (HJ) reachability is ideal for analyzing such safety-critical systems; however, its direct application is limited to small-scale systems of no more than two vehicles due to an exponentially-scaling computational complexity. Previously, the sequential path planning (SPP) method, which assigns strict priorities to vehicles, was proposed; SPP allows multi-vehicle path planning to be done with a linearly-scaling computational complexity. However, the previous formulation assumed that there are no disturbances, and that every vehicle has perfect knowledge of higher-priority vehicles' positions. In this paper, we make SPP more practical by providing three different methods to account for disturbances in dynamics and imperfect knowledge of higher-priority vehicles' states. Each method has different assumptions about information sharing. We demonstrate our proposed methods in simulations.

View on arXiv
Comments on this paper