ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.03590
60
344

Fast Optical Flow using Dense Inverse Search

11 March 2016
Till Kroeger
Radu Timofte
Dengxin Dai
Luc Van Gool
ArXivPDFHTML
Abstract

Most recent works in optical flow extraction focus on the accuracy and neglect the time complexity. However, in real-life visual applications, such as tracking, activity detection and recognition, the time complexity is critical. We propose a solution with very low time complexity and competitive accuracy for the computation of dense optical flow. It consists of three parts: 1) inverse search for patch correspondences; 2) dense displacement field creation through patch aggregation along multiple scales; 3) variational refinement. At the core of our Dense Inverse Search-based method (DIS) is the efficient search of correspondences inspired by the inverse compositional image alignment proposed by Baker and Matthews in 2001. DIS is competitive on standard optical flow benchmarks with large displacements. DIS runs at 300Hz up to 600Hz on a single CPU core, reaching the temporal resolution of human's biological vision system. It is order(s) of magnitude faster than state-of-the-art methods in the same range of accuracy, making DIS ideal for visual applications.

View on arXiv
Comments on this paper