ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.00957
17
288

Question Answering on Freebase via Relation Extraction and Textual Evidence

3 March 2016
Kun Xu
Siva Reddy
Yansong Feng
Songfang Huang
Dongyan Zhao
ArXivPDFHTML
Abstract

Existing knowledge-based question answering systems often rely on small annotated training data. While shallow methods like relation extraction are robust to data scarcity, they are less expressive than the deep meaning representation methods like semantic parsing, thereby failing at answering questions involving multiple constraints. Here we alleviate this problem by empowering a relation extraction method with additional evidence from Wikipedia. We first present a neural network based relation extractor to retrieve the candidate answers from Freebase, and then infer over Wikipedia to validate these answers. Experiments on the WebQuestions question answering dataset show that our method achieves an F_1 of 53.3%, a substantial improvement over the state-of-the-art.

View on arXiv
Comments on this paper