ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.08007
36
20

Practical Riemannian Neural Networks

25 February 2016
Gaétan Marceau-Caron
Yann Ollivier
ArXivPDFHTML
Abstract

We provide the first experimental results on non-synthetic datasets for the quasi-diagonal Riemannian gradient descents for neural networks introduced in [Ollivier, 2015]. These include the MNIST, SVHN, and FACE datasets as well as a previously unpublished electroencephalogram dataset. The quasi-diagonal Riemannian algorithms consistently beat simple stochastic gradient gradient descents by a varying margin. The computational overhead with respect to simple backpropagation is around a factor 222. Perhaps more interestingly, these methods also reach their final performance quickly, thus requiring fewer training epochs and a smaller total computation time. We also present an implementation guide to these Riemannian gradient descents for neural networks, showing how the quasi-diagonal versions can be implemented with minimal effort on top of existing routines which compute gradients.

View on arXiv
Comments on this paper