ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.07188
22
39

Exploring the Neural Algorithm of Artistic Style

23 February 2016
Yaroslav Nikulin
Roman Novak
    GAN
ArXivPDFHTML
Abstract

We explore the method of style transfer presented in the article "A Neural Algorithm of Artistic Style" by Leon A. Gatys, Alexander S. Ecker and Matthias Bethge (arXiv:1508.06576). We first demonstrate the power of the suggested style space on a few examples. We then vary different hyper-parameters and program properties that were not discussed in the original paper, among which are the recognition network used, starting point of the gradient descent and different ways to partition style and content layers. We also give a brief comparison of some of the existing algorithm implementations and deep learning frameworks used. To study the style space further we attempt to generate synthetic images by maximizing a single entry in one of the Gram matrices Gl\mathcal{G}_lGl​ and some interesting results are observed. Next, we try to mimic the sparsity and intensity distribution of Gram matrices obtained from a real painting and generate more complex textures. Finally, we propose two new style representations built on top of network's features and discuss how one could be used to achieve local and potentially content-aware style transfer.

View on arXiv
Comments on this paper