ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06709
21
169

Distributed Deep Learning Using Synchronous Stochastic Gradient Descent

22 February 2016
Dipankar Das
Sasikanth Avancha
Dheevatsa Mudigere
K. Vaidyanathan
Srinivas Sridharan
Dhiraj D. Kalamkar
Bharat Kaul
Pradeep Dubey
    GNN
ArXivPDFHTML
Abstract

We design and implement a distributed multinode synchronous SGD algorithm, without altering hyper parameters, or compressing data, or altering algorithmic behavior. We perform a detailed analysis of scaling, and identify optimal design points for different networks. We demonstrate scaling of CNNs on 100s of nodes, and present what we believe to be record training throughputs. A 512 minibatch VGG-A CNN training run is scaled 90X on 128 nodes. Also 256 minibatch VGG-A and OverFeat-FAST networks are scaled 53X and 42X respectively on a 64 node cluster. We also demonstrate the generality of our approach via best-in-class 6.5X scaling for a 7-layer DNN on 16 nodes. Thereafter we attempt to democratize deep-learning by training on an Ethernet based AWS cluster and show ~14X scaling on 16 nodes.

View on arXiv
Comments on this paper