ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06612
80
95

Clustering subgaussian mixtures by semidefinite programming

22 February 2016
D. Mixon
Soledad Villar
Rachel A. Ward
ArXivPDFHTML
Abstract

We introduce a model-free relax-and-round algorithm for k-means clustering based on a semidefinite relaxation due to Peng and Wei. The algorithm interprets the SDP output as a denoised version of the original data and then rounds this output to a hard clustering. We provide a generic method for proving performance guarantees for this algorithm, and we analyze the algorithm in the context of subgaussian mixture models. We also study the fundamental limits of estimating Gaussian centers by k-means clustering in order to compare our approximation guarantee to the theoretically optimal k-means clustering solution.

View on arXiv
Comments on this paper