Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.05629
Cited By
v1
v2
v3
v4 (latest)
Communication-Efficient Learning of Deep Networks from Decentralized Data
17 February 2016
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Communication-Efficient Learning of Deep Networks from Decentralized Data"
50 / 5,662 papers shown
Title
Distributed Deep Learning with Event-Triggered Communication
Jemin George
Prudhvi K. Gurram
58
16
0
08 Sep 2019
The Disruptions of 5G on Data-driven Technologies and Applications
Dumitrel Loghin
Shaofeng Cai
Gang Chen
Tien Tuan Anh Dinh
Feiyi Fan
...
Wei Wang
Xiaokui Xiao
Yang Yang
Meihui Zhang
Zhonghua Zhang
66
66
0
06 Sep 2019
Hierarchical Federated Learning Across Heterogeneous Cellular Networks
Mehdi Salehi Heydar Abad
Emre Ozfatura
Deniz Gunduz
Ozgur Ercetin
FedML
143
314
0
05 Sep 2019
Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence
Shuiguang Deng
Hailiang Zhao
Weijia Fang
Yuxiang Cai
Schahram Dustdar
Albert Y. Zomaya
120
621
0
02 Sep 2019
GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
M. Bennis
Vaneet Aggarwal
FedML
89
83
0
30 Aug 2019
Key Protected Classification for Collaborative Learning
Mert Bulent Sariyildiz
R. G. Cinbis
Erman Ayday
51
10
0
27 Aug 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
217
4,584
0
21 Aug 2019
Decentralized Federated Learning: A Segmented Gossip Approach
Chenghao Hu
Jingyan Jiang
Zhi Wang
FedML
73
188
0
21 Aug 2019
Towards Effective Device-Aware Federated Learning
Vito Walter Anelli
Yashar Deldjoo
Tommaso Di Noia
Antonio Ferrara
FedML
57
31
0
20 Aug 2019
Distilling On-Device Intelligence at the Network Edge
Jihong Park
Shiqiang Wang
Anis Elgabli
Seungeun Oh
Eunjeong Jeong
Han Cha
Hyesung Kim
Seong-Lyun Kim
M. Bennis
73
32
0
16 Aug 2019
Federated Learning with Additional Mechanisms on Clients to Reduce Communication Costs
Xin Yao
Tianchi Huang
Chenglei Wu
Ruixiao Zhang
Lifeng Sun
FedML
73
38
0
16 Aug 2019
Two-stage Federated Phenotyping and Patient Representation Learning
Dianbo Liu
Dmitriy Dligach
Timothy A. Miller
71
82
0
14 Aug 2019
On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and Beyond
Xiao-Tong Yuan
Ping Li
144
32
0
06 Aug 2019
Motivating Workers in Federated Learning: A Stackelberg Game Perspective
Y. Sarikaya
Ozgur Ercetin
FedML
77
187
0
06 Aug 2019
Machine Learning at the Network Edge: A Survey
M. G. Sarwar Murshed
Chris Murphy
Daqing Hou
Nazar Khan
Ganesh Ananthanarayanan
Faraz Hussain
98
393
0
31 Jul 2019
Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges
Solmaz Niknam
Harpreet S. Dhillon
J. H. Reed
104
613
0
30 Jul 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
62
30
0
30 Jul 2019
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
Simon Wiedemann
H. Kirchhoffer
Stefan Matlage
Paul Haase
Arturo Marbán
...
Ahmed Osman
D. Marpe
H. Schwarz
Thomas Wiegand
Wojciech Samek
111
98
0
27 Jul 2019
Boosting Privately: Privacy-Preserving Federated Extreme Boosting for Mobile Crowdsensing
Yang Liu
Zhuo Ma
Ximeng Liu
Siqi Ma
Surya Nepal
R. Deng
FedML
64
64
0
24 Jul 2019
Federated Learning over Wireless Fading Channels
M. Amiri
Deniz Gunduz
132
516
0
23 Jul 2019
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Yue Liu
Zeyi Wen
Zhaomin Wu
Sixu Hu
Naibo Wang
Yuan N. Li
Xu Liu
Bingsheng He
FedML
130
1,016
0
23 Jul 2019
Decentralized Deep Learning with Arbitrary Communication Compression
Anastasia Koloskova
Tao R. Lin
Sebastian U. Stich
Martin Jaggi
FedML
119
236
0
22 Jul 2019
FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare
Yiqiang Chen
Jindong Wang
Chaohui Yu
Wen Gao
Xin Qin
FedML
117
725
0
22 Jul 2019
Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
Xiaofei Wang
Yiwen Han
Victor C. M. Leung
Dusit Niyato
Xueqiang Yan
Xu Chen
113
1,006
0
19 Jul 2019
Federated Principal Component Analysis
Andreas Grammenos
R. Mendoza-Smith
Jon Crowcroft
Cecilia Mascolo
FedML
138
11
0
18 Jul 2019
The Tradeoff Between Privacy and Accuracy in Anomaly Detection Using Federated XGBoost
Mengwei Yang
Linqi Song
Jie Xu
Congduan Li
Guozhen Tan
FedML
126
31
0
16 Jul 2019
Federated Reinforcement Distillation with Proxy Experience Memory
Han Cha
Jihong Park
Hyesung Kim
Seong-Lyun Kim
M. Bennis
99
16
0
15 Jul 2019
Multi-hop Federated Private Data Augmentation with Sample Compression
Eunjeong Jeong
Seungeun Oh
Jihong Park
Hyesung Kim
M. Bennis
Seong-Lyun Kim
82
17
0
15 Jul 2019
Energy-Efficient Radio Resource Allocation for Federated Edge Learning
Qunsong Zeng
Yuqing Du
K. Leung
Kaibin Huang
83
230
0
13 Jul 2019
Privacy-Preserving Classification with Secret Vector Machines
Valentin Hartmann
Konark Modi
J. M. Pujol
Robert West
85
14
0
08 Jul 2019
Wireless Federated Distillation for Distributed Edge Learning with Heterogeneous Data
Jinhyun Ahn
Osvaldo Simeone
Joonhyuk Kang
FedML
67
109
0
05 Jul 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
302
2,368
0
04 Jul 2019
Astraea: Self-balancing Federated Learning for Improving Classification Accuracy of Mobile Deep Learning Applications
Moming Duan
Duo Liu
Xianzhang Chen
Yujuan Tan
Jinting Ren
Lei Qiao
Liang Liang
FedML
74
198
0
02 Jul 2019
Proof of Witness Presence: Blockchain Consensus for Augmented Democracy in Smart Cities
Evangelos Pournaras
169
65
0
30 Jun 2019
Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices
Yang Zhao
Jun Zhao
Linshan Jiang
Rui Tan
Dusit Niyato
Zengxiang Li
Lingjuan Lyu
Yingbo Liu
88
105
0
26 Jun 2019
Privacy Preserving QoE Modeling using Collaborative Learning
Selim Ickin
K. Vandikas
M. Fiedler
28
22
0
21 Jun 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
114
2,249
0
21 Jun 2019
Scalable and Differentially Private Distributed Aggregation in the Shuffled Model
Badih Ghazi
Rasmus Pagh
A. Velingker
FedML
105
98
0
19 Jun 2019
Robust Federated Learning in a Heterogeneous Environment
Avishek Ghosh
Justin Hong
Dong Yin
Kannan Ramchandran
OOD
FedML
79
221
0
16 Jun 2019
Variational Federated Multi-Task Learning
Luca Corinzia
Ami Beuret
J. M. Buhmann
FedML
115
161
0
14 Jun 2019
Federated Learning for Emoji Prediction in a Mobile Keyboard
Swaroop Indra Ramaswamy
Rajiv Mathews
Kanishka Rao
Franccoise Beaufays
FedML
73
313
0
11 Jun 2019
Performance Analysis and Characterization of Training Deep Learning Models on Mobile Devices
Jie Liu
Jiawen Liu
Wan Du
Dong Li
HAI
52
5
0
10 Jun 2019
Towards Sharp Analysis for Distributed Learning with Random Features
Jian Li
Yong Liu
Weiping Wang
74
3
0
07 Jun 2019
Adaptive Gradient-Based Meta-Learning Methods
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
141
356
0
06 Jun 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
76
408
0
06 Jun 2019
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms
Xiangyi Chen
Tiancong Chen
Haoran Sun
Zhiwei Steven Wu
Mingyi Hong
FedML
64
74
0
04 Jun 2019
Towards Fair and Privacy-Preserving Federated Deep Models
Lingjuan Lyu
Jiangshan Yu
Karthik Nandakumar
Yitong Li
Xingjun Ma
Jiong Jin
Han Yu
Kee Siong Ng
FedML
52
20
0
04 Jun 2019
P3SGD: Patient Privacy Preserving SGD for Regularizing Deep CNNs in Pathological Image Classification
Bingzhe Wu
Shiwan Zhao
Guangyu Sun
Xiaolu Zhang
Zhong Su
C. Zeng
Zhihong Liu
80
41
0
30 May 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
171
485
0
28 May 2019
Bayesian Nonparametric Federated Learning of Neural Networks
Mikhail Yurochkin
Mayank Agarwal
S. Ghosh
Kristjan Greenewald
T. Hoang
Y. Khazaeni
FedML
159
732
0
28 May 2019
Previous
1
2
3
...
109
110
111
112
113
114
Next