ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.05352
6
675

Recommendations as Treatments: Debiasing Learning and Evaluation

17 February 2016
Tobias Schnabel
Adith Swaminathan
Ashudeep Singh
Navin Chandak
Thorsten Joachims
    CML
ArXivPDFHTML
Abstract

Most data for evaluating and training recommender systems is subject to selection biases, either through self-selection by the users or through the actions of the recommendation system itself. In this paper, we provide a principled approach to handling selection biases, adapting models and estimation techniques from causal inference. The approach leads to unbiased performance estimators despite biased data, and to a matrix factorization method that provides substantially improved prediction performance on real-world data. We theoretically and empirically characterize the robustness of the approach, finding that it is highly practical and scalable.

View on arXiv
Comments on this paper