ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.04489
24
2

Convolutional Tables Ensemble: classification in microseconds

14 February 2016
Aharon Bar-Hillel
Eyal Krupka
Noam Bloom
ArXiv (abs)PDFHTML
Abstract

We study classifiers operating under severe classification time constraints, corresponding to 1-1000 CPU microseconds, using Convolutional Tables Ensemble (CTE), an inherently fast architecture for object category recognition. The architecture is based on convolutionally-applied sparse feature extraction, using trees or ferns, and a linear voting layer. Several structure and optimization variants are considered, including novel decision functions, tree learning algorithm, and distillation from CNN to CTE architecture. Accuracy improvements of 24-45% over related art of similar speed are demonstrated on standard object recognition benchmarks. Using Pareto speed-accuracy curves, we show that CTE can provide better accuracy than Convolutional Neural Networks (CNN) for a certain range of classification time constraints, or alternatively provide similar error rates with 5-200X speedup.

View on arXiv
Comments on this paper