16
0

Convex Optimization For Non-Convex Problems via Column Generation

Abstract

We apply column generation to approximating complex structured objects via a set of primitive structured objects under either the cross entropy or L2 loss. We use L1 regularization to encourage the use of few structured primitive objects. We attack approximation using convex optimization over an infinite number of variables each corresponding to a primitive structured object that are generated on demand by easy inference in the Lagrangian dual. We apply our approach to producing low rank approximations to large 3-way tensors.

View on arXiv
Comments on this paper