ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.00734
46
5

Learning Data Triage: Linear Decoding Works for Compressive MRI

1 February 2016
Yen-Huan Li
Volkan Cevher
    MedIm
ArXiv (abs)PDFHTML
Abstract

The standard approach to compressive sampling considers recovering an unknown deterministic signal with certain known structure, and designing the sub-sampling pattern and recovery algorithm based on the known structure. This approach requires looking for a good representation that reveals the signal structure, and solving a non-smooth convex minimization problem (e.g., basis pursuit). In this paper, another approach is considered: We learn a good sub-sampling pattern based on available training signals, without knowing the signal structure in advance, and reconstruct an accordingly sub-sampled signal by computationally much cheaper linear reconstruction. We provide a theoretical guarantee on the recovery error, and show via experiments on real-world MRI data the effectiveness of the proposed compressive MRI scheme.

View on arXiv
Comments on this paper