ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.00310
69
32
v1v2 (latest)

Learning a low-rank shared dictionary for object classification

31 January 2016
T. Vu
V. Monga
ArXiv (abs)PDFHTML
Abstract

Despite the fact that different objects possess distinct class-specific features, they also usually share common patterns. Inspired by this observation, we propose a novel method to explicitly and simultaneously learn a set of common patterns as well as class-specific features for classification. Our dictionary learning framework is hence characterized by both a shared dictionary and particular (class-specific) dictionaries. For the shared dictionary, we enforce a low-rank constraint, i.e. claim that its spanning subspace should have low dimension and the coefficients corresponding to this dictionary should be similar. For the particular dictionaries, we impose on them the well-known constraints stated in the Fisher discrimination dictionary learning (FDDL). Further, we propose a new fast and accurate algorithm to solve the sparse coding problems in the learning step, accelerating its convergence. The said algorithm could also be applied to FDDL and its extensions. Experimental results on widely used image databases establish the advantages of our method over state-of-the-art dictionary learning methods.

View on arXiv
Comments on this paper