ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00202
32
48
v1v2v3v4v5v6 (latest)

Current status linear regression

2 January 2016
P. Groeneboom
K. Hendrickx
ArXiv (abs)PDFHTML
Abstract

We construct n\sqrt{n}n​-consistent and asymptotically normal estimates for the finite dimensional regression parameter in the current status linear regression model, which do not require any smoothing device and are based on maximum likelihood estimates (MLEs) of the infinite dimensional parameter. We also construct estimates, again only based on these MLEs, which are arbitrarily close to efficient estimates, if the generalized Fisher information is finite. This type of efficiency is also derived under minimal conditions for estimates based on smooth non-monotone plug-in estimates of the distribution function. Algorithms for computing the estimates and for selecting the bandwidth of the smooth estimates with a bootstrap method are provided. The connection with results in the econometric literature is also pointed out.

View on arXiv
Comments on this paper