ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.06337
11
11

Kernel principal component analysis network for image classification

20 December 2015
Dan Wu
Jiasong Wu
Rui Zeng
Longyu Jiang
L. Senhadji
H. Shu
ArXivPDFHTML
Abstract

In order to classify the nonlinear feature with linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network (KPCANet) is proposed. First, mapping the data into higher space with kernel principal component analysis to make the data linearly separable. Then building a two-layer KPCANet to obtain the principal components of image. Finally, classifying the principal components with linearly classifier. Experimental results show that the proposed KPCANet is effective in face recognition, object recognition and hand-writing digits recognition, it also outperforms principal component analysis network (PCANet) generally as well. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.

View on arXiv
Comments on this paper