ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.05469
138
25
v1v2 (latest)

Private Causal Inference

17 December 2015
Matt J. Kusner
Yu Sun
Karthik Sridharan
Kilian Q. Weinberger
    CML
ArXiv (abs)PDFHTML
Abstract

Causal inference deals with identifying which random variables "cause" or control other random variables. Recent advances on the topic of causal inference based on tools from statistical estimation and machine learning have resulted in practical algorithms for causal inference. Causal inference has the potential to have significant impact on medical research, prevention and control of diseases, and identifying factors that impact economic changes to name just a few. However, these promising applications for causal inference are often ones that involve sensitive or personal data of users that need to be kept private (e.g., medical records, personal finances, etc). Therefore, there is a need for the development of causal inference methods that preserve data privacy. We study the problem of inferring causality using the current, popular causal inference framework, the additive noise model (ANM) while simultaneously ensuring privacy of the users. Our framework provides differential privacy guarantees for a variety of ANM variants. We run extensive experiments, and demonstrate that our techniques are practical and easy to implement.

View on arXiv
Comments on this paper