33
139

Strategies for Training Large Vocabulary Neural Language Models

Abstract

Training neural network language models over large vocabularies is still computationally very costly compared to count-based models such as Kneser-Ney. At the same time, neural language models are gaining popularity for many applications such as speech recognition and machine translation whose success depends on scalability. We present a systematic comparison of strategies to represent and train large vocabularies, including softmax, hierarchical softmax, target sampling, noise contrastive estimation and self normalization. We further extend self normalization to be a proper estimator of likelihood and introduce an efficient variant of softmax. We evaluate each method on three popular benchmarks, examining performance on rare words, the speed/accuracy trade-off and complementarity to Kneser-Ney.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.