ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.01215
18
91

Convex Regularization for High-Dimensional Multi-Response Tensor Regression

3 December 2015
Garvesh Raskutti
M. Yuan
Han Chen
ArXivPDFHTML
Abstract

In this paper we present a general convex optimization approach for solving high-dimensional multiple response tensor regression problems under low-dimensional structural assumptions. We consider using convex and weakly decomposable regularizers assuming that the underlying tensor lies in an unknown low-dimensional subspace. Within our framework, we derive general risk bounds of the resulting estimate under fairly general dependence structure among covariates. Our framework leads to upper bounds in terms of two very simple quantities, the \emph{Gaussian width} of a convex set in tensor space and the \emph{intrinsic dimension} of the low-dimensional tensor subspace. To the best of our knowledge, this is the first general framework that applies to multiple response problems. These general bounds provide useful upper bounds on rates of convergence for a number of fundamental statistical models of interest including multi-response regression, vector auto-regressive models, low-rank tensor models and pairwise interaction models. Moreover, in many of these settings we prove that the resulting estimates are minimax optimal. We also provide a numerical study that both validates our theoretical guarantees and demonstrates the breadth of our framework.

View on arXiv
Comments on this paper