ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06198
98
10
v1v2 (latest)

Spherical Cap Packing Asymptotics and Rank-Extreme Detection

19 November 2015
Kai Zhang
ArXiv (abs)PDFHTML
Abstract

We study the spherical cap packing problem with a probabilistic approach. Such probabilistic considerations result in an asymptotic sharp universal uniform bound on the maximal inner product between any set of unit vectors and a stochastically independent uniformly distributed unit vector. When the set of unit vectors are themselves independently uniformly distributed, we further develop the extreme value distribution limit of the maximal inner product, which characterizes its uncertainty around the bound. As applications of the above asymptotic results, we derive (1) an asymptotic sharp universal uniform bound on the maximal spurious correlation, as well as its uniform convergence in distribution when the explanatory variables are independently Gaussian distributed; and (2) an asymptotic sharp universal bound on the maximum norm of a low-rank elliptically distributed vector, as well as related limiting distributions. With these results, we develop a fast detection method for a low-rank structure in high-dimensional Gaussian data without using the spectrum information.

View on arXiv
Comments on this paper