ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.05660
10
1

Bayesian hypothesis testing for one bit compressed sensing with sensing matrix perturbation

18 November 2015
H. Zayyani
Mehdi Korki
F. Marvasti
ArXiv (abs)PDFHTML
Abstract

This letter proposes a low-computational Bayesian algorithm for noisy sparse recovery in the context of one bit compressed sensing with sensing matrix perturbation. The proposed algorithm which is called BHT-MLE comprises a sparse support detector and an amplitude estimator. The support detector utilizes Bayesian hypothesis test, while the amplitude estimator uses an ML estimator which is obtained by solving a convex optimization problem. Simulation results show that BHT-MLE algorithm offers more reconstruction accuracy than that of an ML estimator (MLE) at a low computational cost.

View on arXiv
Comments on this paper