ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.05133
18
19

Fast Proximal Linearized Alternating Direction Method of Multiplier with Parallel Splitting

14 November 2015
Canyi Lu
Huan Li
Zhouchen Lin
Shuicheng Yan
ArXivPDFHTML
Abstract

The Augmented Lagragian Method (ALM) and Alternating Direction Method of Multiplier (ADMM) have been powerful optimization methods for general convex programming subject to linear constraint. We consider the convex problem whose objective consists of a smooth part and a nonsmooth but simple part. We propose the Fast Proximal Augmented Lagragian Method (Fast PALM) which achieves the convergence rate O(1/K2)O(1/K^2)O(1/K2), compared with O(1/K)O(1/K)O(1/K) by the traditional PALM. In order to further reduce the per-iteration complexity and handle the multi-blocks problem, we propose the Fast Proximal ADMM with Parallel Splitting (Fast PL-ADMM-PS) method. It also partially improves the rate related to the smooth part of the objective function. Experimental results on both synthesized and real world data demonstrate that our fast methods significantly improve the previous PALM and ADMM.

View on arXiv
Comments on this paper