32
9

Active Contextual Entropy Search

Abstract

Contextual policy search allows adapting robotic movement primitives to different situations. For instance, a locomotion primitive might be adapted to different terrain inclinations or desired walking speeds. Such an adaptation is often achievable by modifying a small number of hyperparameters. However, learning, when performed on real robotic systems, is typically restricted to a small number of trials. Bayesian optimization has recently been proposed as a sample-efficient means for contextual policy search that is well suited under these conditions. In this work, we extend entropy search, a variant of Bayesian optimization, such that it can be used for active contextual policy search where the agent selects those tasks during training in which it expects to learn the most. Empirical results in simulation suggest that this allows learning successful behavior with less trials.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.