ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.04031
13
173

Facial Landmark Detection with Tweaked Convolutional Neural Networks

12 November 2015
Yue Wu
Tal Hassner
Kanggeon Kim
Gérard Medioni
Premkumar Natarajan
    CVBM
ArXivPDFHTML
Abstract

We present a novel convolutional neural network (CNN) design for facial landmark coordinate regression. We examine the intermediate features of a standard CNN trained for landmark detection and show that features extracted from later, more specialized layers capture rough landmark locations. This provides a natural means of applying differential treatment midway through the network, tweaking processing based on facial alignment. The resulting Tweaked CNN model (TCNN) harnesses the robustness of CNNs for landmark detection, in an appearance-sensitive manner without training multi-part or multi-scale models. Our results on standard face landmark detection and face verification benchmarks show TCNN to surpasses previously published performances by wide margins.

View on arXiv
Comments on this paper