ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.02586
22
8

S-PowerGraph: Streaming Graph Partitioning for Natural Graphs by Vertex-Cut

9 November 2015
Cong Xie
Wu-Jun Li
Zhihua Zhang
ArXivPDFHTML
Abstract

One standard solution for analyzing large natural graphs is to adopt distributed computation on clusters. In distributed computation, graph partitioning (GP) methods assign the vertices or edges of a graph to different machines in a balanced way so that some distributed algorithms can be adapted for. Most of traditional GP methods are offline, which means that the whole graph has been observed before partitioning. However, the offline methods often incur high computation cost. Hence, streaming graph partitioning (SGP) methods, which can partition graphs in an online way, have recently attracted great attention in distributed computation. There exist two typical GP strategies: edge-cut and vertex-cut. Most SGP methods adopt edge-cut, but few vertex-cut methods have been proposed for SGP. However, the vertex-cut strategy would be a better choice than the edge-cut strategy because the degree of a natural graph in general follows a highly skewed power-law distribution. Thus, we propose a novel method, called S-PowerGraph, for SGP of natural graphs by vertex-cut. Our S-PowerGraph method is simple but effective. Experiments on several large natural graphs and synthetic graphs show that our S-PowerGraph can outperform the state-of-the-art baselines.

View on arXiv
Comments on this paper