ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.00215
31
99

A Unified Tagging Solution: Bidirectional LSTM Recurrent Neural Network with Word Embedding

1 November 2015
Peilu Wang
Yao Qian
Frank Soong
Lei He
Zhao Hai
ArXivPDFHTML
Abstract

Bidirectional Long Short-Term Memory Recurrent Neural Network (BLSTM-RNN) has been shown to be very effective for modeling and predicting sequential data, e.g. speech utterances or handwritten documents. In this study, we propose to use BLSTM-RNN for a unified tagging solution that can be applied to various tagging tasks including part-of-speech tagging, chunking and named entity recognition. Instead of exploiting specific features carefully optimized for each task, our solution only uses one set of task-independent features and internal representations learnt from unlabeled text for all tasks.Requiring no task specific knowledge or sophisticated feature engineering, our approach gets nearly state-of-the-art performance in all these three tagging tasks.

View on arXiv
Comments on this paper