ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.06460
29
20

Robust Satisfaction of Temporal Logic Specifications via Reinforcement Learning

22 October 2015
Austin M. Jones
Derya Aksaray
Z. Kong
Mac Schwager
C. Belta
ArXiv (abs)PDFHTML
Abstract

We consider the problem of steering a system with unknown, stochastic dynamics to satisfy a rich, temporally layered task given as a signal temporal logic formula. We represent the system as a Markov decision process in which the states are built from a partition of the state space and the transition probabilities are unknown. We present provably convergent reinforcement learning algorithms to maximize the probability of satisfying a given formula and to maximize the average expected robustness, i.e., a measure of how strongly the formula is satisfied. We demonstrate via a pair of robot navigation simulation case studies that reinforcement learning with robustness maximization performs better than probability maximization in terms of both probability of satisfaction and expected robustness.

View on arXiv
Comments on this paper