ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.04454
24
3

Online Markov decision processes with policy iteration

15 October 2015
Yao Ma
Huatian Zhang
Masashi Sugiyama
    OffRL
ArXivPDFHTML
Abstract

The online Markov decision process (MDP) is a generalization of the classical Markov decision process that incorporates changing reward functions. In this paper, we propose practical online MDP algorithms with policy iteration and theoretically establish a sublinear regret bound. A notable advantage of the proposed algorithm is that it can be easily combined with function approximation, and thus large and possibly continuous state spaces can be efficiently handled. Through experiments, we demonstrate the usefulness of the proposed algorithm.

View on arXiv
Comments on this paper