ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.01032
26
171

Deep convolutional acoustic word embeddings using word-pair side information

5 October 2015
Herman Kamper
Weiran Wang
Karen Livescu
    SSL
ArXivPDFHTML
Abstract

Recent studies have been revisiting whole words as the basic modelling unit in speech recognition and query applications, instead of phonetic units. Such whole-word segmental systems rely on a function that maps a variable-length speech segment to a vector in a fixed-dimensional space; the resulting acoustic word embeddings need to allow for accurate discrimination between different word types, directly in the embedding space. We compare several old and new approaches in a word discrimination task. Our best approach uses side information in the form of known word pairs to train a Siamese convolutional neural network (CNN): a pair of tied networks that take two speech segments as input and produce their embeddings, trained with a hinge loss that separates same-word pairs and different-word pairs by some margin. A word classifier CNN performs similarly, but requires much stronger supervision. Both types of CNNs yield large improvements over the best previously published results on the word discrimination task.

View on arXiv
Comments on this paper