ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.00384
70
118
v1v2 (latest)

Off-the-Grid Recovery of Piecewise Constant Images from Few Fourier Samples

1 October 2015
Greg Ongie
M. Jacob
ArXiv (abs)PDFHTML
Abstract

We introduce a method to recover a continuous domain representation of a piecewise constant two-dimensional image from few low-pass Fourier samples. Assuming the edge set of the image is localized to the zero set of a trigonometric polynomial, we show the Fourier coefficients of the partial derivatives of the image satisfy a linear annihilation relation. We present necessary and sufficient conditions for unique recovery of the image from finite low-pass Fourier samples using the annihilation relation. We also propose a practical two-stage recovery algorithm which is robust to model-mismatch and noise. In the first stage we estimate a continuous domain representation of the edge set of the image. In the second stage we perform an extrapolation in Fourier domain by a least squares two-dimensional linear prediction, which recovers the exact Fourier coefficients of the underlying image. We demonstrate our algorithm on the super-resolution recovery of MRI phantoms and real MRI data from low-pass Fourier samples, and show the superiority of the method over standard approaches for single-image super-resolution MRI.

View on arXiv
Comments on this paper