ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.09048
27
10

The maximizing set of the asymptotic normalized log-likelihood for partially observed Markov chains

30 September 2015
Randal Douc
Francois Roueff
Tepmony Sim
ArXiv (abs)PDFHTML
Abstract

This paper deals with a parametrized family of partially observed bivariate Markov chains. We establish that, under very mild assumptions, the limit of the normalized log-likelihood function is maximized when the parameters belong to the equivalence class of the true parameter, which is a key feature for obtaining the consistency of the maximum likelihood estimators (MLEs) in well-specified models. This result is obtained in the general framework of partially dominated models. We examine two specific cases of interest, namely, hidden Markov models (HMMs) and observation-driven time series models. In contrast with previous approaches, the identifiability is addressed by relying on the uniqueness of the invariant distribution of the Markov chain associated to the complete data, regardless its rate of convergence to the equilibrium.

View on arXiv
Comments on this paper