ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.07577
29
1007

A Review of Feature Selection Methods Based on Mutual Information

24 September 2015
J. Vergara
P. Estévez
ArXivPDFHTML
Abstract

In this work we present a review of the state of the art of information theoretic feature selection methods. The concepts of feature relevance, redundance and complementarity (synergy) are clearly defined, as well as Markov blanket. The problem of optimal feature selection is defined. A unifying theoretical framework is described, which can retrofit successful heuristic criteria, indicating the approximations made by each method. A number of open problems in the field are presented.

View on arXiv
Comments on this paper