ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.05765
47
5

"Oddball SGD": Novelty Driven Stochastic Gradient Descent for Training Deep Neural Networks

18 September 2015
Andrew J. R. Simpson
ArXiv (abs)PDFHTML
Abstract

Stochastic Gradient Descent (SGD) is arguably the most popular of the machine learning methods applied to training deep neural networks (DNN) today. It has recently been demonstrated that SGD can be statistically biased so that certain elements of the training set are learned more rapidly than others. In this article, we place SGD into a feedback loop whereby the probability of selection is proportional to error magnitude. This provides a novelty-driven oddball SGD process that learns more rapidly than traditional SGD by prioritising those elements of the training set with the largest novelty (error). In our DNN example, oddball SGD trains some 50x faster than regular SGD.

View on arXiv
Comments on this paper