ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.04612
24
14
v1v2 (latest)

Adapting Resilient Propagation for Deep Learning

15 September 2015
Alan Mosca
G. D. Magoulas
ArXiv (abs)PDFHTML
Abstract

The Resilient Propagation (Rprop) algorithm has been very popular for backpropagation training of multilayer feed-forward neural networks in various applications. The standard Rprop however encounters difficulties in the context of deep neural networks as typically happens with gradient-based learning algorithms. In this paper, we propose a modification of the Rprop that combines standard Rprop steps with a special drop out technique. We apply the method for training Deep Neural Networks as standalone components and in ensemble formulations. Results on the MNIST dataset show that the proposed modification alleviates standard Rprop's problems demonstrating improved learning speed and accuracy.

View on arXiv
Comments on this paper