28
17

CNN Based Hashing for Image Retrieval

Abstract

Along with data on the web increasing dramatically, hashing is becoming more and more popular as a method of approximate nearest neighbor search. Previous supervised hashing methods utilized similarity/dissimilarity matrix to get semantic information. But the matrix is not easy to construct for a new dataset. Rather than to reconstruct the matrix, we proposed a straightforward CNN-based hashing method, i.e. binarilizing the activations of a fully connected layer with threshold 0 and taking the binary result as hash codes. This method achieved the best performance on CIFAR-10 and was comparable with the state-of-the-art on MNIST. And our experiments on CIFAR-10 suggested that the signs of activations may carry more information than the relative values of activations between samples, and that the co-adaption between feature extractor and hash functions is important for hashing.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.