53
49

Discriminating quantum states: the multiple Chernoff distance

Abstract

We consider the problem of testing multiple quantum hypotheses {ρ1n,,ρrn}\{\rho_1^{\otimes n},\ldots,\rho_r^{\otimes n}\}, where an arbitrary prior distribution is given and each of the rr hypotheses is nn copies of a quantum state. It is known that the average error probability PeP_e decays exponentially to zero, that is, Peexp(ξn)P_e\thicksim\exp(-\xi n). However, this error exponent ξ\xi is generally unknown, except for the case that r=2r=2. In this paper, we solve the long-standing open problem of identifying the above error exponent, by proving Nussbaum and Szko\l a's conjecture that ξ=minijC(ρi,ρj)\xi=\min_{i\neq j}C(\rho_i,\rho_j). The right-hand side of this equality is called the multiple quantum Chernoff distance, and C(ρi,ρj):=max0s1{logTrρisρj1s}C(\rho_i,\rho_j):=\max_{0\leq s\leq 1}\{-\log\operatorname{Tr}\rho_i^s\rho_j^{1-s}\} has been previously identified as the optimal error exponent for testing two hypotheses, ρin\rho_i^{\otimes n} versus ρjn\rho_j^{\otimes n}. The main ingredient of our proof is a new upper bound for the average error probability, for testing an ensemble of finite-dimensional, but otherwise general, quantum states. This upper bound, up to a states-dependent factor, matches the multiple-state generalization of Nussbaum and Szko\l a's lower bound. Specialized to the case r=2r=2, we give an alternative proof to the achievability of the binary-hypothesis Chernoff distance, which was originally proved by Audenaert et al.

View on arXiv
Comments on this paper