ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.02766
41
19
v1v2v3v4v5v6 (latest)

FFT-Based Fast Computation of Multivariate Kernel Estimators with Unconstrained Bandwidth Matrices

11 August 2015
A. Gramacki
J. Gramacki
ArXiv (abs)PDFHTML
Abstract

The problem of fast computation of multivariate kernel density estimation (KDE) is still an open research problem. In our view, the existing solutions do not resolve this matter in a satisfactory way. One of the most elegant and efficient approach utilizes the fast Fourier transform. Unfortunately, the existing FFT-based solution suffers from a serious limitation, as it can accurately operate only with the constrained (i.e., diagonal) multivariate bandwidth matrices. In this paper we describe the problem and give a satisfactory solution. The proposed solution may be successfully used also in other research problems, for example for the fast computation of the optimal bandwidth for KDE.

View on arXiv
Comments on this paper