ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.02765
37
14
v1v2 (latest)

Are Slepian-Wolf Rates Necessary for Distributed Parameter Estimation?

11 August 2015
M. Gamal
Lifeng Lai
ArXiv (abs)PDFHTML
Abstract

We consider a distributed parameter estimation problem, in which multiple terminals send messages related to their local observations using limited rates to a fusion center who will obtain an estimate of a parameter related to observations of all terminals. It is well known that if the transmission rates are in the Slepian-Wolf region, the fusion center can fully recover all observations and hence can construct an estimator having the same performance as that of the centralized case. One natural question is whether Slepian-Wolf rates are necessary to achieve the same estimation performance as that of the centralized case. In this paper, we show that the answer to this question is negative. We establish our result by explicitly constructing an asymptotically minimum variance unbiased estimator (MVUE) that has the same performance as that of the optimal estimator in the centralized case while requiring information rates less than the conditions required in the Slepian-Wolf rate region.

View on arXiv
Comments on this paper