ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.01722
315
295
v1v2 (latest)

Unconstrained Face Verification using Deep CNN Features

7 August 2015
Jun-Cheng Chen
Vishal M. Patel
Rama Chellappa
    CVBM
ArXiv (abs)PDFHTML
Abstract

In this paper, we present an algorithm for unconstrained face verification based on deep convolutional features and evaluate it on the newly released IARPA Janus Benchmark A (IJB-A) dataset. The IJB-A dataset includes real-world unconstrained faces from 500 subjects with full pose and illumination variations which are much harder than the traditional Labeled Face in the Wild (LFW) and Youtube Face (YTF) datasets. The deep convolutional neural network (DCNN) is trained using the CASIA-WebFace dataset. Extensive experiments on the IJB-A dataset are provided.

View on arXiv
Comments on this paper