ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.06711
43
32
v1v2 (latest)

The SYSU System for the Interspeech 2015 Automatic Speaker Verification Spoofing and Countermeasures Challenge

24 July 2015
Shi-Yan Weng
Shushan Chen
Lei Yu
Xuewei Wu
Weicheng Cai
Zhi Liu
Ming Li
    AAML
ArXiv (abs)PDFHTML
Abstract

Many existing speaker verification systems are reported to be vulnerable against different spoofing attacks, for example speaker-adapted speech synthesis, voice conversion, play back, etc. In order to detect these spoofed speech signals as a countermeasure, we propose a score level fusion approach with several different i-vector subsystems. We show that the acoustic level Mel-frequency cepstral coefficients (MFCC) features, the phase level modified group delay cepstral coefficients (MGDCC) and the phonetic level phoneme posterior probability (PPP) tandem features are effective for the countermeasure. Furthermore, feature level fusion of these features before i-vector modeling also enhance the performance. A polynomial kernel support vector machine is adopted as the supervised classifier. In order to enhance the generalizability of the countermeasure, we also adopted the cosine similarity and PLDA scoring as one-class classifications methods. By combining the proposed i-vector subsystems with the OpenSMILE baseline which covers the acoustic and prosodic information further improves the final performance. The proposed fusion system achieves 0.29% and 3.26% EER on the development and test set of the database provided by the INTERSPEECH 2015 automatic speaker verification spoofing and countermeasures challenge.

View on arXiv
Comments on this paper