ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.06550
26
750

Human Pose Estimation with Iterative Error Feedback

23 July 2015
João Carreira
Pulkit Agrawal
Katerina Fragkiadaki
Jitendra Malik
    3DH
ArXivPDFHTML
Abstract

Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencies in the output spaces, that are quite structured for tasks such as articulated human pose estimation or object segmentation. Here we propose a framework that expands the expressive power of hierarchical feature extractors to encompass both input and output spaces, by introducing top-down feedback. Instead of directly predicting the outputs in one go, we use a self-correcting model that progressively changes an initial solution by feeding back error predictions, in a process we call Iterative Error Feedback (IEF). IEF shows excellent performance on the task of articulated pose estimation in the challenging MPII and LSP benchmarks, matching the state-of-the-art without requiring ground truth scale annotation.

View on arXiv
Comments on this paper