ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.04734
41
14

Variational Gram Functions: Convex Analysis and Optimization

16 July 2015
Amin Jalali
Maryam Fazel
Lin Xiao
ArXivPDFHTML
Abstract

We propose a new class of convex penalty functions, called \emph{variational Gram functions} (VGFs), that can promote pairwise relations, such as orthogonality, among a set of vectors in a vector space. These functions can serve as regularizers in convex optimization problems arising from hierarchical classification, multitask learning, and estimating vectors with disjoint supports, among other applications. We study convexity for VGFs, and give efficient characterizations for their convex conjugates, subdifferentials, and proximal operators. We discuss efficient optimization algorithms for regularized loss minimization problems where the loss admits a common, yet simple, variational representation and the regularizer is a VGF. These algorithms enjoy a simple kernel trick, an efficient line search, as well as computational advantages over first order methods based on the subdifferential or proximal maps. We also establish a general representer theorem for such learning problems. Lastly, numerical experiments on a hierarchical classification problem are presented to demonstrate the effectiveness of VGFs and the associated optimization algorithms.

View on arXiv
Comments on this paper