ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.03372
38
22

Ordered Decompositional DAG Kernels Enhancements

13 July 2015
Giovanni Da San Martino
Nicoló Navarin
A. Sperduti
ArXivPDFHTML
Abstract

In this paper, we show how the Ordered Decomposition DAGs (ODD) kernel framework, a framework that allows the definition of graph kernels from tree kernels, allows to easily define new state-of-the-art graph kernels. Here we consider a fast graph kernel based on the Subtree kernel (ST), and we propose various enhancements to increase its expressiveness. The proposed DAG kernel has the same worst-case complexity as the one based on ST, but an improved expressivity due to an augmented set of features. Moreover, we propose a novel weighting scheme for the features, which can be applied to other kernels of the ODD framework. These improvements allow the proposed kernels to improve on the classification performances of the ST-based kernel for several real-world datasets, reaching state-of-the-art performances.

View on arXiv
Comments on this paper