ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.01160
25
10

Correlated Multiarmed Bandit Problem: Bayesian Algorithms and Regret Analysis

5 July 2015
Vaibhav Srivastava
Paul B. Reverdy
Naomi Ehrich Leonard
ArXivPDFHTML
Abstract

We consider the correlated multiarmed bandit (MAB) problem in which the rewards associated with each arm are modeled by a multivariate Gaussian random variable, and we investigate the influence of the assumptions in the Bayesian prior on the performance of the upper credible limit (UCL) algorithm and a new correlated UCL algorithm. We rigorously characterize the influence of accuracy, confidence, and correlation scale in the prior on the decision-making performance of the algorithms. Our results show how priors and correlation structure can be leveraged to improve performance.

View on arXiv
Comments on this paper