ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.00123
21
3

Joint Covariance Estimation with Mutual Linear Structure

1 July 2015
I. Soloveychik
A. Wiesel
ArXivPDFHTML
Abstract

We consider the problem of joint estimation of structured covariance matrices. Assuming the structure is unknown, estimation is achieved using heterogeneous training sets. Namely, given groups of measurements coming from centered populations with different covariances, our aim is to determine the mutual structure of these covariance matrices and estimate them. Supposing that the covariances span a low dimensional affine subspace in the space of symmetric matrices, we develop a new efficient algorithm discovering the structure and using it to improve the estimation. Our technique is based on the application of principal component analysis in the matrix space. We also derive an upper performance bound of the proposed algorithm in the Gaussian scenario and compare it with the Cramer-Rao lower bound. Numerical simulations are presented to illustrate the performance benefits of the proposed method.

View on arXiv
Comments on this paper