ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.07677
13
4

Manifold Optimization for Gaussian Mixture Models

25 June 2015
Reshad Hosseini
S. Sra
ArXivPDFHTML
Abstract

We take a new look at parameter estimation for Gaussian Mixture Models (GMMs). In particular, we propose using \emph{Riemannian manifold optimization} as a powerful counterpart to Expectation Maximization (EM). An out-of-the-box invocation of manifold optimization, however, fails spectacularly: it converges to the same solution but vastly slower. Driven by intuition from manifold convexity, we then propose a reparamerization that has remarkable empirical consequences. It makes manifold optimization not only match EM---a highly encouraging result in itself given the poor record nonlinear programming methods have had against EM so far---but also outperform EM in many practical settings, while displaying much less variability in running times. We further highlight the strengths of manifold optimization by developing a somewhat tuned manifold LBFGS method that proves even more competitive and reliable than existing manifold optimization tools. We hope that our results encourage a wider consideration of manifold optimization for parameter estimation problems.

View on arXiv
Comments on this paper