ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.06318
55
24
v1v2 (latest)

Communication Efficient Distributed Agnostic Boosting

21 June 2015
Shang-Tse Chen
Maria-Florina Balcan
Duen Horng Chau
    FedML
ArXiv (abs)PDFHTML
Abstract

We consider the problem of learning from distributed data in the agnostic setting, i.e., in the presence of arbitrary forms of noise. Our main contribution is a general distributed boosting-based procedure for learning an arbitrary concept space, that is simultaneously noise tolerant, communication efficient, and computationally efficient. This improves significantly over prior works that were either communication efficient only in noise-free scenarios or computationally prohibitive. Empirical results on large synthetic and real-world datasets demonstrate the effectiveness and scalability of the proposed approach.

View on arXiv
Comments on this paper