Online Matrix Factorization via Broyden Updates
Ömer Deniz Akyıldız

Abstract
In this paper, we propose an online algorithm to compute matrix factorizations. Proposed algorithm updates the dictionary matrix and associated coefficients using a single observation at each time. The algorithm performs low-rank updates to dictionary matrix. We derive the algorithm by defining a simple objective function to minimize whenever an observation is arrived. We extend the algorithm further for handling missing data. We also provide a mini-batch extension which enables to compute the matrix factorization on big datasets. We demonstrate the efficiency of our algorithm on a real dataset and give comparisons with well-known algorithms such as stochastic gradient matrix factorization and nonnegative matrix factorization (NMF).
View on arXivComments on this paper