ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.03740
20
12

Sharp bounds for cumulative distribution functions

11 June 2015
J. Segura
ArXivPDFHTML
Abstract

Ratios of integrals can be bounded in terms of ratios of integrands under certain monotonicity conditions. This result, related with L'H\^{o}pital's monotone rule, can be used to obtain sharp bounds for cumulative distribution functions. We consider the case of noncentral cumulative gamma and beta distributions. Three different types of sharp bounds for the noncentral gamma distributions (also called Marcum functions) are obtained in terms of modified Bessel functions and one additional type of function: a second modified Bessel function, two error functions or one incomplete gamma function. For the noncentral beta case the bounds are expressed in terms of Kummer functions and one additional Kummer function or an incomplete beta function. These bounds improve previous results with respect to their range of application and/or its sharpness.

View on arXiv
Comments on this paper